

Altered tumor necrosis factor α release from mononuclear cells of obese reproductive-age women during hyperglycemia

Frank González^{a,*}, Judi Minium^a, Neal S. Rote^a, John P. Kirwan^b

^aDepartment of Reproductive Biology, Case Western Reserve University School of Medicine, Cleveland, OH 44109, USA

^bDepartment of Medicine, Schwartz Center for Metabolism and Nutrition, Case Western Reserve University School of Medicine, Cleveland, OH 44109, USA

Received 6 June 2005; accepted 19 August 2005

Abstract

The aim of the study was to determine whether lipopolysaccharide (LPS)-stimulated tumor necrosis factor α (TNF- α) release from mononuclear cells (MNCs) is altered in obese reproductive-age women in response to hyperglycemia. Six obese and 8 age-matched normal-weight women (18–40 years) underwent a 2-hour 75-g oral glucose tolerance test. Tumor necrosis factor α release was measured from MNCs cultured in the presence of LPS after isolation from blood samples drawn fasting and 2 hours after glucose ingestion. Insulin resistance was derived by homeostasis model assessment of insulin resistance. Total body fat (%) and truncal fat (%) were determined by dual-energy absorptiometry. Obese women had a higher ($P < .03$) body mass index (34.1 ± 1.1 vs 21.9 ± 0.8 kg/m 2), percentage of total body fat ($42.4\% \pm 1.3\%$ vs $28.7\% \pm 1.8\%$), and percentage of truncal fat ($42.1\% \pm 1.2\%$ vs $24.7\% \pm 2.2\%$). Homeostasis model assessment of insulin resistance was greater in the obese group (58.0 ± 10.6 vs 27.8 ± 4.3 , $P < .02$). Fasting plasma C-reactive protein (7787 ± 884 vs 236 ± 79 ng/mL, $P < .0001$) and TNF- α (2.37 ± 0.09 vs 0.54 ± 0.04 pg/mL, $P < .05$) were both elevated in obese women. Hyperglycemia resulted in a suppression of LPS-stimulated TNF- α release from MNCs of normal-weight subjects (154 ± 21 vs 57 ± 28 pg/mL, $P < .003$), but no change in obese women (148 ± 36 vs 173 ± 49 pg/mL). The TNF- α response was different between groups (-97 ± 21 vs $+24 \pm 22$ pg/mL, $P < .003$). There was also a positive association between the incremental change in MNC-derived TNF- α and percentage of truncal fat ($r = 0.75$, $P < .002$). In conclusion, these data suggest that there is an absence of the “normal” suppression of TNF- α in MNCs after hyperglycemia in obese women, and this response may contribute to impaired glucose disposal and insulin resistance.

© 2006 Elsevier Inc. All rights reserved.

1. Introduction

Obesity is associated with the development of insulin resistance and hyperglycemia [1,2]. Obesity is also a pro-inflammatory state as evidenced by elevated plasma concentrations of C-reactive protein (CRP) [3,4]. Some studies have also reported plasma elevations in the pro-inflammatory cytokine, tumor necrosis factor α (TNF- α), in obese subjects [3,5,6]. This has not been confirmed by other investigations and thus remains controversial [7–10]. However, there is sufficient evidence of TNF- α expression in multiple tissues where TNF- α exerts its effect in an

autocrine-paracrine fashion typical of cytokines [11,12]. Several human and animal studies have documented overexpression of TNF- α in adipose tissue when obesity or type 2 diabetes mellitus is present [13–15]. Tumor necrosis factor α may induce insulin resistance through short- and long-term effects on insulin-sensitive tissues. Moreover, in vitro studies have demonstrated that TNF- α immediately truncates insulin receptor signaling in cultured adipocytes, hepatocytes, and skeletal muscle [16–18]. In addition, long-term exposure to TNF- α impairs mobilization of GLUT 4, the insulin-sensitive glucose transport protein [19].

It has recently been shown that peripheral blood mononuclear cells (MNCs) of obese subjects are activated in a pro-inflammatory state [20]. This is important because MNCs are known to migrate into adipose tissue to activate adipocyte TNF- α production [21,22]. However, it is now

* Corresponding author. Department of Obstetrics and Gynecology, MetroHealth Medical Center, Cleveland, OH 44109, USA. Tel.: +1 216 778 7467; fax: +1 216 778 7101.

E-mail address: fgonzalez@metrohealth.org (F. González).

clear that the major source of TNF- α in adipose tissue of obese subjects is MNC-derived macrophages present in the stromal-vascular compartment [22–25]. Mononuclear cells exhibit increased oxidative stress in response to hyperglycemia, which is known to activate nuclear factor κ B (NF κ B), a pro-inflammatory transcription factor that promotes TNF- α gene transcription [26–28]. We have previously reported that in response to hyperglycemia, the increased abdominal adiposity of insulin-resistant older men was related to increased lipopolysaccharide (LPS)-stimulated TNF- α release from MNCs [29]. However, this relationship has never been explored in obese reproductive-age women.

Thus, we embarked on a study to determine the status of TNF- α release from MNCs in response to hyperglycemia in obese reproductive-age women. It is important to characterize this phenomenon in women who are at greater risk of developing metabolic abnormalities affecting reproduction. Moreover, obese reproductive-age women are more likely to develop gestational diabetes and other obesity-related obstetrical complications [30–32]. They may also exhibit phenotypic expression of polycystic ovary syndrome in individuals who are susceptible [33,34]. We hypothesized that LPS-stimulated TNF- α release from MNCs is altered in obese reproductive-age women in response to an oral glucose challenge as compared with normal-weight women of similar age, and that there is a relationship between MNC-derived TNF- α release and measures of adiposity.

2. Materials and methods

2.1. Subjects

Fourteen women (6 obese and 8 normal weight) aged between 20 and 40 years participated in the study. Obesity was defined as a body mass index (BMI) between 30 and 40 kg/m². Normal-weight subjects had a BMI between 18 and 25 kg/m². All subjects were ovulatory as evidenced by regular menses and a luteal-phase serum progesterone level greater than 5 ng/mL. All subjects were screened for diabetes, inflammatory illnesses, or endocrinopathies, and none were taking medications that would affect carbohydrate metabolism or immune function. Based on Adult Treatment Panel III guidelines to diagnose the metabolic syndrome, none of the subjects exhibited 3 or more of the following features: waist circumference of more than 88 cm, plasma triglyceride of 150 mg/dL or higher, plasma high-density lipoprotein cholesterol (HDL-C) of less than 50 mg/dL, blood pressure $\geq 130/\geq 85$ mm Hg, and fasting glucose of 110 mg/dL or higher [35]. None of the subjects were involved in any regular exercise program for at least 6 months before the time of testing. All of the subjects provided written informed consent in accordance with the Case Western Reserve University and MetroHealth Medical Center guidelines for the protection of human subjects.

2.2. Study design

All study subjects underwent an oral glucose tolerance test (OGTT) between days 5 and 8 after the onset of menses. Before the OGTT, they were provided with a healthy diet consisting of 50% carbohydrate, 35% fat, and 15% protein for 3 consecutive days (days 1–3). The test was performed on the morning of day 4 after an overnight fast of \sim 12 hours. All subjects also underwent body composition assessment on the same day the OGTT was performed.

2.3. Oral glucose tolerance test

Baseline blood samples (5 mL each) were drawn for glucose and insulin determination. A 75-g glucose beverage was subsequently ingested over 10 minutes. Blood samples (5 mL each) were again drawn for glucose and insulin determination 2 hours after glucose ingestion. Upon completion of the test, subjects were fed a high-carbohydrate snack. Plasma glucose concentrations were assayed immediately from the blood samples collected. Additional plasma was isolated from the same blood samples and stored at -70°C until assayed for CRP, TNF- α , and lipids. Glucose tolerance was assessed by the World Health Organization criteria with normal glucose tolerance defined as a 2-hour glucose stimulated value less than 140 mg/dL [36]. Insulin sensitivity was estimated by homeostasis model assessment of insulin resistance (IS_{HOMA}) using the following formula: fasting glucose \times fasting insulin/22.5 [37].

2.4. Body composition assessment

Height without shoes was measured to the nearest 1.0 cm. Body weight was measured to the nearest 0.1 kg. Waist circumference was measured at the level of the umbilicus and used to estimate abdominal adiposity [38]. In addition, all subjects underwent dual-energy absorptiometry to determine the percentage of total body fat and percentage of truncal fat using the QDR 4500 Elite model scanner (Hologic, Waltham, MA). Truncal fat content was defined as the area between the dome of the diaphragm (cephalad limit) and the top of the greater trochanter (caudal limit) [39].

2.5. Analytical methods

Mononuclear cell isolation and culture were performed on a 20-mL blood sample drawn at 0 (pre) and 2 (post) hours during the OGTT. The cells were isolated by Histopaque-1077 density gradient centrifugation [40], washed 2 times in pyrogen-free saline, resuspended in RPMI (0.3 mg/mL L-glutamine, 100 U/mL penicillin, 100 $\mu\text{g/mL}$ streptomycin) with serum substitute TCH (TCH Serum Replacement, MD Biomedicals Inc, Irvine, CA), and seeded in coated culture plates (2.5×10^6 cells/mL). The cells were then incubated (humidified 5% CO₂, 37°C) for 24 hours with LPS endotoxin (1 ng/mL). Cell supernatants (10000g for 2 minutes) were subsequently collected and stored at -70°C until analysis.

Table 1
Body composition and fasting lipid levels of subjects

	Normal weight (n = 8)	Obese (n = 6)
Age (y)	33 ± 2	30 ± 3
Systolic blood pressure (mm Hg)	104 ± 3	113 ± 5
Diastolic blood pressure (mm Hg)	58 ± 3	73 ± 6*
Height (cm)	165 ± 1.1	162 ± 3.0
Body weight (kg)	59.7 ± 1.9	89.2 ± 3.2*
BMI (kg/m ²)	21.9 ± 0.8	34.1 ± 1.1*
Total body fat (%)	28.7 ± 1.8	42.4 ± 1.3*
Truncal fat (%)	25.4 ± 2.5	42.1 ± 1.2*
Waist circumference (cm)	74.3 ± 2.9	101.6 ± 3.5*
Total cholesterol (mg/dL)	171 ± 7	214 ± 23
Triglyceride (mg/dL)	54 ± 6	132 ± 50
HDL-C (mg/dL)	53 ± 4	52 ± 4
LDL cholesterol (mg/dL)	111 ± 6	145 ± 15*

Values are expressed as means ± SE.

* P < .002, significantly different from the lean group.

Plasma glucose concentrations were measured by the glucose oxidase method (YSI, Yellow Springs, OH), whereas plasma insulin concentrations were measured by a double-antibody radioimmunoassay (Linco Research, St Charles, MO). Plasma CRP concentrations were measured by a high-sensitivity enzyme-linked immunosorbent assay (Alpha Diagnostics International, San Antonio, TX). Tumor necrosis factor α concentrations were also measured by enzyme-linked immunosorbent assay (BioSource International, Camarillo, CA). Levels of total cholesterol, triglyceride, and HDL-C were measured by enzymatic methods (SYNCHRON LX20 PRO automatic analyzer, Beckman Coulter, Fullerton, CA). Low-density lipoprotein (LDL) cholesterol was calculated using the formula of Friedewald et al [41]. All samples from each subject were

Table 2
Plasma glucose, insulin, CRP, and TNF- α levels, and TNF- α release from MNCs while fasting and in response to an oral glucose challenge in lean and obese women

	Fasting	2 h postglucose	Δ
Glucose (mg/dL)			
Normal weight	85.9 ± 1.6	98.5 ± 8.9	12.6 ± 8.4
Obese	83.8 ± 5.1	121.3 ± 6.1*	36.5 ± 10.9
Insulin (μU/mL)			
Normal weight	7.3 ± 1.2	32.2 ± 6.5*	24.9 ± 5.7
Obese	15.0 ± 2.4†	98.5 ± 25.9*	83.5 ± 24.7
CRP (ng/mL)			
Normal weight	236 ± 79	239 ± 87	3 ± 24
Obese	7787 ± 884†	7209 ± 1020†	578 ± 200
Plasma TNF- α (pg/mL)			
Normal weight	0.55 ± 0.04	0.57 ± 0.04	0.02 ± 0.05
Obese	2.37 ± 0.93†	2.13 ± 1.10	-0.24 ± 0.28
MNC TNF- α (pg/mL)			
Normal weight	154 ± 21	57 ± 28#	-97 ± 21
Obese	148 ± 36	173 ± 49	25 ± 22‡

Values are expressed as means ± SE. Δ indicates calculated difference between means for 2 hours postglucose-fasting.

* P < .02, 2 hours postglucose significantly higher than fasting.

† P < .05, significantly higher than the lean group.

P < .003, 2 hours postglucose significantly lower than fasting.

‡ P < .003, significantly different response than the lean group.

measured in duplicate in the same assay at the end of the study. The interassay and intra-assay coefficients of variation for all assays were 7% and 12%, respectively.

2.6. Statistics

The StatView statistical package (SAS Institute, Cary, NC) was used for data analysis. The difference between the pre- and postglucose challenge values for primary dependent variables such as TNF- α release from MNCs was calculated to represent the incremental change. Descriptive data and the incremental change of variables were compared between groups using the unpaired Student *t* test. Differences between pre- and postglucose challenge variables within groups were analyzed using the paired Student *t* test. Correlation analyses were performed by linear regression using the method of least squares. All values are expressed as means ± SE. An α level of .05 was used to determine statistical significance.

3. Results

Age and height were similar between groups, and all subjects were normotensive. The obese group had significantly higher ($P < .002$) weight, BMI, percentage of total body fat, percentage of truncal fat, waist circumference, and LDL levels (Table 1).

Levels of glucose while fasting and 2 hours postglucose ingestion were similar in both groups (Table 2). All subjects had a normal glucose response during the OGTT with 2-hour glucose levels between 62 and 138 mg/dL. However, fasting insulin levels were significantly higher ($P < .05$) in the obese group. In addition, the 2-hour glucose level in the obese group and the 2-hour insulin level in both groups were significantly increased ($P < .02$) compared with fasting levels. As depicted in Fig. 1, IS_{HOMA} was significantly greater ($P < .02$) in the obese group compared with the lean control group. IS_{HOMA} was positively correlated with BMI ($r = 0.65$, $P < .02$), percentage of total body fat ($r = 0.53$, $P < .05$), percentage of truncal fat ($r = 0.54$, $P < .05$), and waist circumference ($r = 0.69$, $P < .009$) for the combined groups (data not shown).

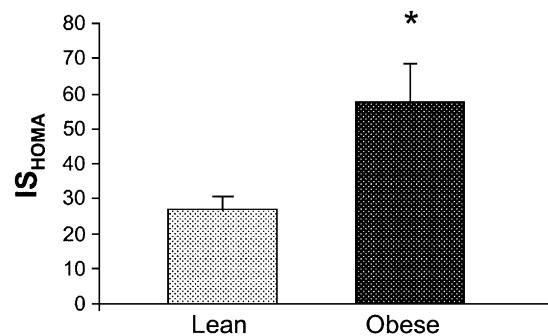


Fig. 1. Estimate of insulin resistance based on IS_{HOMA} . *P < .02, significantly greater insulin resistance in the obese group.

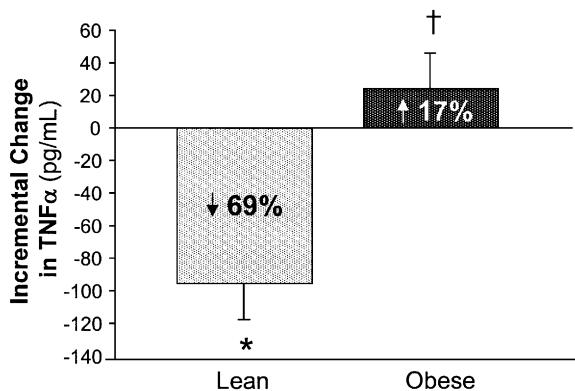


Fig. 2. Incremental change in TNF- α release (pg/mL) from MNCs cultured with LPS for 24 hours when fasting samples (pre) were compared with the samples collected 2 hours after glucose ingestion (post). * $P < .003$, 2 hours postglucose was significantly lower than fasting in the normal-weight group. † $P < .003$, TNF- α response to oral glucose challenge in the obese group was significantly different from that of the normal-weight group.

Fasting plasma concentrations of CRP and TNF- α were significantly ($P < .05$) higher in the obese group, but remained unchanged after glucose ingestion in both groups (Table 2). Lipopolysaccharide-stimulated TNF- α release from MNCs in the fasting state was also similar in both groups. However, hyperglycemia resulted in significant ($P < .003$) suppression of LPS-stimulated TNF- α release from MNCs of normal-weight controls, but no change in obese women (Table 2 and Fig. 2). In addition, the incremental change in TNF- α release from MNCs between the 2 groups was significantly different ($P < .003$). As depicted in Fig. 3, there was a direct relationship between the MNC-derived incremental change in TNF- α release and percentage of truncal fat ($r = 0.75$, $P < .002$) for the combined groups. There was also a direct relationship between the MNC-derived incremental change in TNF- α release and BMI ($r = 0.66$, $P < .01$), percentage of total body fat ($r = 0.74$, $P < .003$), and waist circumference ($r = 0.78$, $P < .002$) for the combined groups (data not shown).

4. Discussion

Our data clearly show that obese reproductive-age women have impaired suppression of TNF- α release from MNCs in response to physiological hyperglycemia. In contrast, TNF- α release from MNCs was suppressed in normal-weight controls of similar age under postprandial-like conditions. Because TNF- α is a pro-inflammatory cytokine, these findings provide further support for the role of inflammation in the development of insulin resistance, and that TNF- α particularly may contribute to the decline in insulin action in obese reproductive-age women. Furthermore, the independent associations of TNF- α with BMI, percentage of total body fat, percentage of truncal fat, and waist circumference suggest that increased adiposity, especially increased abdominal adiposity, may be a key determinant of the observed

differences in the MNC-derived TNF- α response and its potential role in modulating insulin action.

The normal in vivo response of MNCs to physiological hyperglycemia may be to suppress the release of TNF- α . Lean controls in the present study showed a 69% decrease in LPS-stimulated TNF- α release from MNCs in response to hyperglycemia. We have previously reported similar results in healthy normal-weight young men [29]. Decreased TNF- α release from MNCs may be a physiological benefit in the presence of hyperglycemia when there is a need to increase glucose disposal. Tumor necrosis factor α is known to cause a decrease in insulin receptor tyrosine phosphorylation and an increase in serine phosphorylation of insulin receptor substrate 1, leading to inhibition of downstream insulin signaling and impairment of glucose uptake [13,16]. Thus, normal-weight individuals may be capable of facilitating glucose disposal by controlling TNF- α release to optimize insulin signaling in the postprandial state.

In contrast, the MNCs of obese reproductive-age women may have an impaired ability to down-regulate TNF- α release in response to physiological hyperglycemia. Indeed, the elevated plasma concentrations of CRP and TNF- α observed in this group confirm previous reports demonstrating that obesity is a pro-inflammatory state [3–6]. Obese reproductive-age women also exhibited evidence of insulin resistance based on the increase in IS_{HOMA}. In vivo oral glucose challenge has been shown to stimulate a transient increase in reactive oxygen species generation from MNCs of normal individuals resulting in oxidative stress [27]. Similar pro-inflammatory responses have been noted after lipid and protein intakes [42,43]. Oxidative stress causes activation and nuclear translocation of NF κ B to promote transcription of a variety of inflammatory

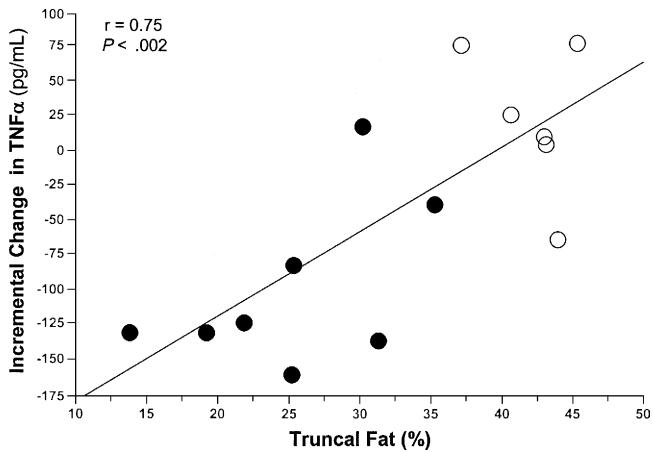


Fig. 3. Correlation between abdominal adiposity and the incremental change in TNF- α release from MNCs after oral glucose challenge. Data are shown for 14 women of reproductive age with normal glucose tolerance. Tumor necrosis factor α release was measured from LPS-stimulated MNCs obtained at 0 and 2 hours of an oral glucose challenge test. Abdominal obesity was estimated from the percentage of truncal fat measured by dual-energy absorptiometry. Open circles indicate obese group; closed circles, normal-weight control group.

mediators including TNF- α [26,28]. It is possible that continuously increased macronutrient intake leading to obesity results in an increase in oxidative stress and inflammation observed in the obese. A subsequent failure to suppress TNF- α release from MNCs in the postprandial state may promote insulin resistance. This concept is further supported by previous reports of a reduction in oxidative stress and inflammatory mediators after energy restriction in obese subjects and after a 2-day fast in healthy subjects [5,44,45].

Our data suggest that there may be a link between obesity and MNC-derived TNF- α release. There was a direct relationship between the change in TNF- α release from MNCs after physiological hyperglycemia and measures of adiposity, particularly abdominal adiposity. Obese reproductive-age women with insulin resistance exhibited increased BMI, percentage of total body fat, percentage of truncal fat, and waist circumference. Activated MNC-derived macrophages are the major source of TNF- α in the increased adipose tissue of the obese and are capable of inducing further TNF- α production in adipocytes [22–25]. It is possible that the inflamed adipose tissue of the obese, especially in the abdominal region, perpetuates the inability to suppress MNC-derived TNF- α release after hyperglycemia. These findings are consistent with previous observations in young adults demonstrating that changes in insulin sensitivity are a function of abdominal adiposity [31,46]. Thus, the uncontrolled TNF- α release may, in turn, promote the insulin resistance observed in our obese subjects.

The hyperinsulinemia that occurs after an oral glucose challenge is unlikely to contribute to the unsuppressed TNF- α release from MNCs in obese subjects. In a previous study, infusion of insulin as opposed to that of saline serving as a control suppressed reactive oxygen species generation and NF κ B activation in the obese [47]. Thus, insulin exerts an anti-inflammatory effect that ameliorates the pro-inflammatory response to physiological hyperglycemia evident in an insulin-resistant state such as obesity.

In conclusion, obese reproductive-age women exhibited an altered MNC-derived TNF- α response during physiological hyperglycemia. The failure of these obese subjects to suppress LPS-stimulated TNF- α release compared with a normal-weight control group suggests that TNF- α of MNC origin is involved in mediating insulin resistance observed in these individuals. Our findings also demonstrate that the increased adiposity in obese young women promotes a pro-inflammatory state. The association between the change in TNF- α release and both total and abdominal fat suggests that increased adiposity contributes to the different TNF- α responses in these groups. We recognize that our findings obtained from LPS stimulation may not reflect the physiological circumstance. However, it is intriguing to consider the possibility that when glucose increases during the postprandial period in normal-weight individuals, TNF- α release from MNCs is decreased to

facilitate glucose uptake by insulin-sensitive tissues. Conversely, the loss of this postprandial response may be one of the factors that contribute to insulin resistance in the obese subjects.

Acknowledgment

This research was supported by the National Institutes of Health grant HD-01273 (Women's Reproductive Health Research Program) to the Department of Obstetrics and Gynecology at MetroHealth Medical Center and grant MO1 RR-080 to the General Clinical Research Center.

We thank the nursing staff of the General Clinical Research Center for supporting the implementation of the study and assisting with data collection. We also thank Christine Marchetti for assistance with the graphics preparation.

References

- [1] Kahn BB, Flier JS. Obesity and insulin resistance. *J Clin Invest* 2000;106:473–81.
- [2] Colditz GA, Willett WC, Rotnitzky A, Manson JE. Weight gain as a risk factor for clinical diabetes mellitus in women. *Ann Intern Med* 1995;122:481–6.
- [3] Yudkin JS, Stehouwer CD, Emeis JJ, Coppock SW. C-reactive protein in healthy subjects: associations with obesity, insulin resistance, and endothelial dysfunction: a potential role for cytokines originating from adipose tissue? *Arterioscler Thromb Vasc Biol* 1999;19:972–8.
- [4] Bastard JP, Jardel C, Delattre J, Hainque B, Bruckert E, Oberlin F. Evidence for a link between adipose tissue interleukin-6 content and serum C-reactive protein concentrations in obese subjects. *Circulation* 1999;99:2221–2.
- [5] Dandona P, Weinstock R, Thusu K, Abdel-Rahman E, Aljada A, Wadden T. Tumor necrosis factor- α in sera of obese patients: fall with weight loss. *J Clin Endocrinol Metab* 1998;83:2907–10.
- [6] Zahorska-Markowicz B, Janowska J, Olszanecka-Glinianowicz M, Zurakowski A. Serum concentrations of TNF- α and soluble TNF- α receptors in obesity. *Int J Obes Relat Metab Disord* 2000;24:1392–5.
- [7] Kern PA, Ranganathan S, Li C, Wood L, Ranganathan G. Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. *Am J Physiol Endocrinol Metab* 2001;280:E745–51.
- [8] Laimer M, Ebenbichler CF, Kaser S, Sandhofer A, Weiss H, Nehoda H, et al. Markers of chronic inflammation and obesity: a prospective study on the reversibility of this association in middle-aged women undergoing weight loss by surgical intervention. *Int J Obes Relat Metab Disord* 2002;26:659–62.
- [9] Bastard JP, Maachi M, van Nhieu JT, Jardel C, Bruckert E, Grimaldi A, et al. Adipose tissue IL-6 content correlates with resistance to insulin activation of glucose uptake both in vivo and in vitro. *J Clin Endocrinol Metab* 2002;87:2084–9.
- [10] Bruun JM, Verdich C, Toustrup S, Astrup A, Richelsen B. Association between measures of insulin sensitivity and circulating levels of interleukin-8, interleukin-6 and tumor necrosis factor- α . Effect of weight loss on obese men. *Eur J Endocrinol* 2003;148:535–42.
- [11] Sethi JK, Hotamisligil GS. The role of TNF α in adipocyte metabolism. *Semin Cell Dev Biol* 1999;10:19–29.
- [12] Warne JP. Tumour necrosis factor α : a key regulator of adipose tissue mass. *J Endocrinol* 2003;177:351–5.

- [13] Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor α : direct role in obesity linked insulin resistance. *Science* 1993;259:87–91.
- [14] Hoffman C, Lorenz K, Braithwaite SS, Coles JR, Palazak BJ, Hotamisligil GS, et al. Altered gene expression for tumor necrosis factor α and its receptor during drug and dietary modulation of insulin resistance. *Endocrinology* 1994;134:264–70.
- [15] Hotamisligil GS, Arner P, Caro JF, Atkinson RL, Spiegelman BM. Increased adipose tissue expression of tumor necrosis factor α in human obesity and insulin resistance. *J Clin Invest* 1995;95:2409–15.
- [16] Hotamisligil GS, Murray DL, Choy LN, Spiegelman BM. Tumor necrosis factor α inhibits signaling from the insulin receptor. *Proc Natl Acad Sci U S A* 1994;91:4854–8.
- [17] Feinstein R, Kanety H, Papa MZ, Lunenfeld B, Karasik A. Tumor necrosis factor α suppresses insulin-induced tyrosine phosphorylation of insulin receptor and its substrates. *J Biol Chem* 1993;268:26055–8.
- [18] Del Aguila LF, Claffey KP, Kirwan JP. TNF- α impairs insulin signaling and insulin stimulation of glucose uptake in C₂C₁₂ muscle cells. *Am J Physiol Endocrinol Metab* 1999;276:E849–55.
- [19] Stephens JM, Pekala PH. Transcriptional repression of the GLUT 4 and C/EBP genes in 3T3-L1 adipocytes by tumor necrosis factor α . *J Biol Chem* 1991;266:21839–45.
- [20] Ghanim H, Aljada A, Hoffmeyer D, Syed T, Mohanty P, Dandona P. Circulating mononuclear cells in the obese are in a proinflammatory state. *Circulation* 2004;110:1564–71.
- [21] Wellen KE, Hotamisligil GS. Obesity-induced inflammatory changes in adipose tissue. *J Clin Invest* 2003;112:1785–8.
- [22] Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante Jr AW. Obesity is associated with macrophage accumulation in adipose tissue. *J Clin Invest* 2003;112:1796–808.
- [23] Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. *J Clin Invest* 2003;112:1821–30.
- [24] Fain JN, Bahouth SW, Madan AK. TNF α release by nonfat cells of adipose tissue. *Int J Obes* 2004;28:616–22.
- [25] Fain JN, Madan AK, Hyler ML, Cheema P, Bahouth SM. Comparison of the release of adiponectin by adipose tissue, adipose tissue matrix, and adipocytes from visceral and subcutaneous abdominal adipose tissues of obese humans. *Endocrinology* 2004;145:2273–82.
- [26] Evans JL, Goldfine ID, Maddux BA, Grodsky GM. Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. *Endocr Rev* 2002;23:599–622.
- [27] Mohanty P, Hamouda W, Garg R, Aljada A, Ghanim H. Glucose challenge stimulates reactive oxygen species generation by leukocytes. *J Clin Endocrinol Metab* 2000;85:2970–3.
- [28] Barnes PJ, Karin M. Nuclear factor- κ B: a pivotal transcription factor in chronic inflammatory diseases. *N Engl J Med* 1997;336:1066–71.
- [29] Kirwan JP, Krishnan RK, Weaver JA, Del Aguila LF, Evans WJ. Human aging is associated with altered TNF- α production during hyperglycemia and hyperinsulinemia. *Am J Physiol Endocrinol Metab* 2001;281:E1137–43.
- [30] Galtier-Dercure F, Bringer J. Obesity and pregnancy. *Ann Endocrinol* 2002;63:470–5.
- [31] Linne Y. Effects of obesity on women's reproduction and complications during pregnancy. *Obes Rev* 2004;5:137–43.
- [32] Huidobro A, Fulford A, Carrasco E. Incidence of gestational diabetes and relationship to obesity in Chilean pregnant women. *Rev Med Chil* 2004;132:931–8.
- [33] Pasquali R, Vicennati V, Gambineri A. Influence of weight and distribution of adipose tissue in functional hyperandrogenism. *Contracept Fertil Sex* 1998;26:372–5.
- [34] Falioia E, Canibus P, Gatti C, Frezza F, Santangelo M, Garrapa GG, et al. Body composition, fat distribution and metabolic characteristics of lean and obese women with polycystic ovary syndrome. *J Endocrinol Invest* 2004;27:424–9.
- [35] Expert Panel on Detection, Evaluation and Treatment of High Blood Cholesterol in Adults. Executive summary of the third report of the National Cholesterol Education Program (NCEP). Expert Panel on Detection, Evaluation and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). *JAMA* 2001; 285:2486–97.
- [36] Modan M, Harris MI, Halkin H. Evaluation of WHO and NDDG criteria for impaired glucose tolerance. Results from two national samples. *Diabetes* 1989;38:1630–5.
- [37] Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. *Diabetologia* 1985;28:412–9.
- [38] Kohrt WM, Kirwan JP, King DS, Staten MA, Holloszy JO. Insulin resistance of aging is related to abdominal obesity. *Diabetes* 1993; 42:273–81.
- [39] Taylor RW, Keil D, Gold EJ, Williams SM, Goulding A. Body mass index, waist girth, and waist to hip ratio as indexes of total and regional adiposity in women: evaluation using receiver operating characteristic curves. *Am J Clin Nutr* 1988;67:44–9.
- [40] Boyam A. Isolation of mononuclear cells and granulocytes from human blood. *Scand J Clin Lab Invest* 1968;21(Suppl 97):77–89.
- [41] Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the ultracentrifuge. *Clin Chem* 1972;18:499–502.
- [42] Mohanty P, Ghanim H, Hamouda W, Aljada A, Garg R, Dandona P. Both lipid and protein intakes stimulate increased generation of reactive oxygen species by polymorphonuclear leukocytes and mononuclear cells. *Am J Clin Nutr* 2002;75:767–72.
- [43] Aljada A, Mohanty P, Ghanim H, Abdo T, Tripathy D, Chaudari A, et al. Increase in intranuclear nuclear factor kappaB and decrease in inhibitor kappaB in mononuclear cells after a mixed meal: evidence for a proinflammatory effect. *Am J Clin Nutr* 2004;79: 682–90.
- [44] Dandona P, Mohanty P, Ghanim H, Aljada A, Browne R, Hamouda W, et al. The suppressive effect of dietary restriction and weight loss in the obese on the generation of reactive oxygen species by leukocytes, lipid peroxidation, and protein carbonylation. *J Clin Endocrinol Metab* 2001;86:355–62.
- [45] Dandona P, Mohanty P, Hamouda W, Ghanim H, Aljada A, Garg R, et al. Inhibitory effect of a two day fast on reactive oxygen species (ROS) generation by leukocytes and plasma ortho-tyrosine and meta-tyrosine concentrations. *J Clin Endocrinol Metab* 2001;86: 2899–902.
- [46] Kriketos AD, Greenfield JR, Peake PW, Furley SM, Denyer GS, Charlesworth JA, et al. Inflammation, insulin resistance, and adiposity. *Diabetes Care* 2004;27:2033–40.
- [47] Dandona P, Aljada A, Mohanty P, Ghanim H, Hamouda W, Assian E, et al. Insulin inhibits intranuclear factor κ B and stimulates I κ B in mononuclear cells in obese subjects: evidence for an anti-inflammatory effect? *J Clin Endocrinol Metab* 2001;86:3257–65.