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Abstract

The aim of the study was to determine whether lipopolysaccharide (LPS)-stimulated tumor necrosis factor o (TNF-o) release from
mononuclear cells (MNCs) is altered in obese reproductive-age women in response to hyperglycemia. Six obese and 8 age-matched normal-
weight women (18-40 years) underwent a 2-hour 75-g oral glucose tolerance test. Tumor necrosis factor o release was measured from
MNCs cultured in the presence of LPS after isolation from blood samples drawn fasting and 2 hours after glucose ingestion. Insulin
resistance was derived by homeostasis model assessment of insulin resistance. Total body fat (%) and truncal fat (%) were determined by
dual-energy absorptiometry. Obese women had a higher (P < .03) body mass index (34.1 £+ 1.1 vs 21.9 + 0.8 kg/m?), percentage of
total body fat (42.4% =+ 1.3% vs 28.7% + 1.8%), and percentage of truncal fat (42.1% =+ 1.2% vs 24.7% =+ 2.2%). Homeostasis model
assessment of insulin resistance was greater in the obese group (58.0 + 10.6 vs 27.8 + 4.3, P < .02). Fasting plasma C-reactive protein
(7787 £+ 884 vs 236 + 79 ng/mL, P < .0001) and TNF-o (2.37 = 0.09 vs 0.54 + 0.04 pg/mL, P < .05) were both elevated in obese
women. Hyperglycemia resulted in a suppression of LPS-stimulated TNF-o release from MNCs of normal-weight subjects (154 + 21 vs
57 &+ 28 pg/mL, P < .003), but no change in obese women (148 + 36 vs 173 + 49 pg/mL). The TNF-« response was different between
groups (—97 + 21 vs +24 + 22 pg/mL, P < .003). There was also a positive association between the incremental change in MNC-derived
TNF-o and percentage of truncal fat ( = 0.75, P < .002). In conclusion, these data suggest that there is an absence of the “normal”
suppression of TNF-« in MNCs after hyperglycemia in obese women, and this response may contribute to impaired glucose disposal and
insulin resistance.
© 2006 Elsevier Inc. All rights reserved.

1. Introduction autocrine-paracrine fashion typical of cytokines [11,12].
Several human and animal studies have documented
overexpression of TNF-« in adipose tissue when obesity
or type 2 diabetes mellitus is present [13-15]. Tumor
necrosis factor o may induce insulin resistance through
short- and long-term effects on insulin-sensitive tissues.
Moreover, in vitro studies have demonstrated that TNF-o
immediately truncates insulin receptor signaling in cultured
adipocytes, hepatocytes, and skeletal muscle [16-18]. In
addition, long-term exposure to TNF-o impairs mobiliza-
tion of GLUT 4, the insulin-sensitive glucose transport
protein [19].

It has recently been shown that peripheral blood mono-

Obesity is associated with the development of insulin
resistance and hyperglycemia [1,2]. Obesity is also a pro-
inflammatory state as evidenced by elevated plasma
concentrations of C-reactive protein (CRP) [3,4]. Some
studies have also reported plasma elevations in the pro-
inflammatory cytokine, tumor necrosis factor o (TNF-u), in
obese subjects [3,5,6]. This has not been confirmed by
other investigations and thus remains controversial [7-10].
However, there is sufficient evidence of TNF-a expression
in multiple tissues where TNF-o exerts its effect in an
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nuclear cells (MNCs) of obese subjects are activated in
a pro-inflammatory state [20]. This is important because
MNCs are known to migrate into adipose tissue to activate
adipocyte TNF-a production [21,22]. However, it is now
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clear that the major source of TNF-o in adipose tissue of
obese subjects is MNC-derived macrophages present in the
stromal-vascular compartment [22-25]. Mononuclear cells
exhibit increased oxidative stress in response to hypergly-
cemia, which is known to activate nuclear factor kB
(NFxB), a pro-inflammatory transcription factor that
promotes TNF-o gene transcription [26-28]. We have
previously reported that in response to hyperglycemia, the
increased abdominal adiposity of insulin-resistant older men
was related to increased lipopolysaccharide (LPS)-stimulat-
ed TNF-o release from MNCs [29]. However, this
relationship has never been explored in obese reproduc-
tive-age women.

Thus, we embarked on a study to determine the status
of TNF-a release from MNCs in response to hyperglyce-
mia in obese reproductive-age women. It is important to
characterize this phenomenon in women who are at greater
risk of developing metabolic abnormalities affecting re-
production. Moreover, obese reproductive-age women are
more likely to develop gestational diabetes and other
obesity-related obstetrical complications [30-32]. They
may also exhibit phenotypic expression of polycystic
ovary syndrome in individuals who are susceptible
[33,34]. We hypothesized that LPS-stimulated TNF-«
release from MNCs is altered in obese reproductive-age
women in response to an oral glucose challenge as
compared with normal-weight women of similar age, and
that there is a relationship between MNC-derived TNF-«
release and measures of adiposity.

2. Materials and methods

2.1. Subjects

Fourteen women (6 obese and 8 normal weight) aged
between 20 and 40 years participated in the study. Obesity
was defined as a body mass index (BMI) between 30 and
40 kg/m?. Normal-weight subjects had a BMI between
18 and 25 kg/m?. All subjects were ovulatory as evidenced
by regular menses and a luteal-phase serum progesterone
level greater than 5 ng/mL. All subjects were screened for
diabetes, inflammatory illnesses, or endocrinopathies, and
none were taking medications that would affect carbohy-
drate metabolism or immune function. Based on Adult
Treatment Panel III guidelines to diagnose the metabolic
syndrome, none of the subjects exhibited 3 or more of
the following features: waist circumference of more than
88 cm, plasma triglyceride of 150 mg/dL or higher, plasma
high-density lipoprotein cholesterol (HDL-C) of less than
50 mg/dL, blood pressure >130/>85 mm Hg, and fasting
glucose of 110 mg/dL or higher [35]. None of the subjects
were involved in any regular exercise program for at least
6 months before the time of testing. All of the subjects
provided written informed consent in accordance with the
Case Western Reserve University and MetroHealth Medical
Center guidelines for the protection of human subjects.

2.2. Study design

All study subjects underwent an oral glucose tolerance
test (OGTT) between days 5 and 8 after the onset of menses.
Before the OGTT, they were provided with a healthy diet
consisting of 50% carbohydrate, 35% fat, and 15% protein
for 3 consecutive days (days 1-3). The test was performed
on the morning of day 4 after an overnight fast of ~12 hours.
All subjects also underwent body composition assessment
on the same day the OGTT was performed.

2.3. Oral glucose tolerance test

Baseline blood samples (5 mL each) were drawn for
glucose and insulin determination. A 75-g glucose
beverage was subsequently ingested over 10 minutes.
Blood samples (5 mL each) were again drawn for glucose
and insulin determination 2 hours after glucose ingestion.
Upon completion of the test, subjects were fed a high-
carbohydrate snack. Plasma glucose concentrations were
assayed immediately from the blood samples collected.
Additional plasma was isolated from the same blood
samples and stored at —70°C until assayed for CRP, TNF-o,
and lipids. Glucose tolerance was assessed by the World
Health Organization criteria with normal glucose tolerance
defined as a 2-hour glucose stimulated value less than
140 mg/dL [36]. Insulin sensitivity was estimated by
homeostasis model assessment of insulin resistance
(ISgoma) using the following formula: fasting glucose x
fasting insulin/22.5 [37].

2.4. Body composition assessment

Height without shoes was measured to the nearest
1.0 cm. Body weight was measured to the nearest 0.1 kg.
Waist circumference was measured at the level of the
umbilicus and used to estimate abdominal adiposity [38].
In addition, all subjects underwent dual-energy absorpti-
ometry to determine the percentage of total body fat and
percentage of truncal fat using the QDR 4500 Elite model
scanner (Hologic, Waltham, MA). Truncal fat content
was defined as the area between the dome of the dia-
phragm (cephalad limit) and the top of the greater
trochanter (caudal limit) [39].

2.5. Analytical methods

Mononuclear cell isolation and culture were performed
on a 20-mL blood sample drawn at 0 (pre) and 2 (post)
hours during the OGTT. The cells were isolated by
Histopaque-1077 density gradient centrifugation [40],
washed 2 times in pyrogen-free saline, resuspended in
RPMI (0.3 mg/mL L-glutamine, 100 U/mL penicillin,
100 pg/mL streptomycin) with serum substitute TCH
(TCH Serum Replacement, MD Biomedicals Inc, Irvine,
CA), and seeded in coated culture plates (2.5 x 10° cells/
mL). The cells were then incubated (humidified 5% CO,,
37°C) for 24 hours with LPS endotoxin (1 ng/mL). Cell
supernatants (10000g for 2 minutes) were subsequently
collected and stored at —70°C until analysis.
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Table 1
Body composition and fasting lipid levels of subjects

Normal weight Obese

(n =38 (n = 6)

Age (y) 33+£2 30+3
Systolic blood pressure (mm Hg) 104 + 3 113 +5
Diastolic blood pressure (mm Hg) 58+3 73 £ 6*
Height (cm) 165 + 1.1 162 + 3.0
Body weight (kg) 597+ 19 89.2 + 3.2%
BMI (kg/m?) 219 £ 0.8 341 £ 1.1%*
Total body fat (%) 287 + 1.8 424 + 1.3*
Truncal fat (%) 254 £ 25 42.1 £ 1.2*
Waist circumference (cm) 743 £ 29 101.6 + 3.5%
Total cholesterol (mg/dL) 171 £ 7 214 + 23
Triglyceride (mg/dL) 54+6 132 + 50
HDL-C (mg/dL) 53+ 4 52 + 4
LDL cholesterol (mg/dL) 111 £ 6 145 + 15*

Values are expressed as means + SE.
* P <.002, significantly different from the lean group.

Plasma glucose concentrations were measured by the
glucose oxidase method (YSI, Yellow Springs, OH),
whereas plasma insulin concentrations were measured by
a double-antibody radioimmunoassay (Linco Research,
St Charles, MO). Plasma CRP concentrations were mea-
sured by a high-sensitivity enzyme-linked immunosorbent
assay (Alpha Diagnostics International, San Antonio, TX).
Tumor necrosis factor o concentrations were also measured
by enzyme-linked immunosorbent assay (BioSource Inter-
national, Camarillo, CA). Levels of total cholesterol,
triglyceride, and HDL-C were measured by enzymatic
methods (SYNCHRON LX20 PRO automatic analyzer,
Beckman Coulter, Fullerton, CA). Low-density lipoprotein
(LDL) cholesterol was calculated using the formula of
Friedewald et al [41]. All samples from each subject were

Table 2

Plasma glucose, insulin, CRP, and TNF-o levels, and TNF-o release from
MNCs while fasting and in response to an oral glucose challenge in lean
and obese women

Fasting 2 h postglucose A

Glucose (mg/dL)

Normal weight 859 £ 1.6 98.5 +£ 8.9 12.6 + 8.4
Obese 83.8 £ 5.1 121.3 £ 6.1* 36.5 £ 109
Insulin (¢U/mL)

Normal weight 73+ 1.2 322 £ 6.5% 249 + 5.7
Obese 15.0 + 2.4 98.5 + 25.9% 83.5 + 247
CRP (ng/mL)

Normal weight 236 + 79 239 + 87 3+24
Obese 7787 + 8841 7209 + 10207 578 + 200
Plasma TNF-o (pg/mL)

Normal weight 0.55 + 0.04 0.57 + 0.04 0.02 £+ 0.05
Obese 2.37 + 0.93 2.13 £ 1.10 —0.24 +£ 0.28
MNC TNF-a (pg/mL)

Normal weight 154 + 21 57 + 28% -97 + 21
Obese 148 + 36 173 + 49 25 + 22¢

Values are expressed as means + SE. A indicates calculated difference
between means for 2 hours postglucose-fasting.

* P < .02, 2 hours postglucose significantly higher than fasting.

T P < .05, significantly higher than the lean group.

# P < .003, 2 hours postglucose significantly lower than fasting.

Y P < .003, significantly different response than the lean group.

measured in duplicate in the same assay at the end of the
study. The interassay and intra-assay coefficients of
variation for all assays were 7% and 12%, respectively.

2.6. Statistics

The StatView statistical package (SAS Institute, Cary,
NC) was used for data analysis. The difference between the
pre- and postglucose challenge values for primary depen-
dent variables such as TNF-o release from MNCs was
calculated to represent the incremental change. Descriptive
data and the incremental change of variables were compared
between groups using the unpaired Student ¢ test. Differ-
ences between pre- and postglucose challenge variables
within groups were analyzed using the paired Student ¢ test.
Correlation analyses were performed by linear regression
using the method of least squares. All values are expressed
as means = SE. An « level of .05 was used to determine
statistical significance.

3. Results

Age and height were similar between groups, and all
subjects were normotensive. The obese group had signifi-
cantly higher (P < .002) weight, BMI, percentage of total
body fat, percentage of truncal fat, waist circumference, and
LDL levels (Table 1).

Levels of glucose while fasting and 2 hours postglucose
ingestion were similar in both groups (Table 2). All subjects
had a normal glucose response during the OGTT with
2-hour glucose levels between 62 and 138 mg/dL. However,
fasting insulin levels were significantly higher (P < .05) in
the obese group. In addition, the 2-hour glucose level in the
obese group and the 2-hour insulin level in both groups
were significantly increased (P < .02) compared with
fasting levels. As depicted in Fig. 1, ISyoma was
significantly greater (P < .02) in the obese group compared
with the lean control group. ISyoma Was positively
correlated with BMI (» = 0.65, P < .02), percentage of
total body fat (r = 0.53, P < .05), percentage of truncal
fat (r = 0.54, P < .05), and waist circumference (»r = 0.69,
P <.009) for the combined groups (data not shown).

80 - *
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50
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30
20 -
10
0
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Lean Obese

Fig. 1. Estimate of insulin resistance based on ISyoma. *P < .02,
significantly greater insulin resistance in the obese group.
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Fig. 2. Incremental change in TNF-u release (pg/mL) from MNCs cultured
with LPS for 24 hours when fasting samples (pre) were compared with the
samples collected 2 hours after glucose ingestion (post). *P < .003, 2 hours
postglucose was significantly lower than fasting in the normal-weight
group. P < .003, TNF-u response to oral glucose challenge in the obese
group was significantly different from that of the normal-weight group.

Fasting plasma concentrations of CRP and TNF-o were
significantly (P < .05) higher in the obese group, but
remained unchanged after glucose ingestion in both groups
(Table 2). Lipopolysaccharide-stimulated TNF-o release
from MNCs in the fasting state was also similar in both
groups. However, hyperglycemia resulted in significant
(P < .003) suppression of LPS-stimulated TNF-o release
from MNCs of normal-weight controls, but no change in
obese women (Table 2 and Fig. 2). In addition, the
incremental change in TNF-a release from MNCs between
the 2 groups was significantly different (P < .003). As
depicted in Fig. 3, there was a direct relationship between
the MNC-derived incremental change in TNF-« release and
percentage of truncal fat (» = 0.75, P <.002) for the com-
bined groups. There was also a direct relationship between
the MNC-derived incremental change in TNF-« release and
BMI (r = 0.66, P < .01), percentage of total body fat
(r = 0.74, P < .003), and waist circumference (r = 0.78,
P <.002) for the combined groups (data not shown).

4. Discussion

Our data clearly show that obese reproductive-age women
have impaired suppression of TNF-u release from MNCs in
response to physiological hyperglycemia. In contrast, TNF-«
release from MNCs was suppressed in normal-weight
controls of similar age under postprandial-like conditions.
Because TNF-« is a pro-inflammatory cytokine, these
findings provide further support for the role of inflammation
in the development of insulin resistance, and that TNF-o
particularly may contribute to the decline in insulin action in
obese reproductive-age women. Furthermore, the indepen-
dent associations of TNF-o with BMI, percentage of total
body fat, percentage of truncal fat, and waist circumference
suggest that increased adiposity, especially increased ab-
dominal adiposity, may be a key determinant of the observed

differences in the MNC-derived TNF-o response and its
potential role in modulating insulin action.

The normal in vivo response of MNCs to physiological
hyperglycemia may be to suppress the release of TNF-o.
Lean controls in the present study showed a 69% decrease in
LPS-stimulated TNF-o. release from MNCs in response
to hyperglycemia. We have previously reported similar
results in healthy normal-weight young men [29]. Decreased
TNF-a release from MNCs may be a physiological benefit
in the presence of hyperglycemia when there is a need to
increase glucose disposal. Tumor necrosis factor o is known
to cause a decrease in insulin receptor tyrosine phosphor-
ylation and an increase in serine phosphorylation of insulin
receptor substrate 1, leading to inhibition of downstream
insulin signaling and impairment of glucose uptake [13,16].
Thus, normal-weight individuals may be capable of
facilitating glucose disposal by controlling TNF-o release
to optimize insulin signaling in the postprandial state.

In contrast, the MNCs of obese reproductive-age women
may have an impaired ability to down-regulate TNF-o
release in response to physiological hyperglycemia. Indeed,
the elevated plasma concentrations of CRP and TNF-«
observed in this group confirm previous reports demon-
strating that obesity is a pro-inflammatory state [3-6].
Obese reproductive-age women also exhibited evidence of
insulin resistance based on the increase in ISgyopa. In vivo
oral glucose challenge has been shown to stimulate a
transient increase in reactive oxygen species generation
from MNCs of normal individuals resulting in oxidative
stress [27]. Similar pro-inflammatory responses have been
noted after lipid and protein intakes [42,43]. Oxidative
stress causes activation and nuclear translocation of NFxB
to promote transcription of a variety of inflammatory
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Fig. 3. Correlation between abdominal adiposity and the incremental
change in TNF-u« release from MNCs after oral glucose challenge. Data are
shown for 14 women of reproductive age with normal glucose tolerance.
Tumor necrosis factor « release was measured from LPS-stimulated MNCs
obtained at 0 and 2 hours of an oral glucose challenge test. Abdominal
obesity was estimated from the percentage of truncal fat measured by dual-
energy absorptiometry. Open circles indicate obese group; closed circles,
normal-weight control group.
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mediators including TNF-a [26,28]. It is possible that
continuously increased macronutrient intake leading to
obesity results in an increase in oxidative stress and
inflammation observed in the obese. A subsequent failure
to suppress TNF-a release from MNCs in the postprandial
state may promote insulin resistance. This concept is
further supported by previous reports of a reduction in
oxidative stress and inflammatory mediators after energy
restriction in obese subjects and after a 2-day fast in healthy
subjects [5,44,45].

Our data suggest that there may be a link between
obesity and MNC-derived TNF-o release. There was a
direct relationship between the change in TNF-« release
from MNCs after physiological hyperglycemia and meas-
ures of adiposity, particularly abdominal adiposity. Obese
reproductive-age women with insulin resistance exhibited
increased BMI, percentage of total body fat, percentage
of truncal fat, and waist circumference. Activated MNC-
derived macrophages are the major source of TNF-« in the
increased adipose tissue of the obese and are capable of
inducing further TNF-o production in adipocytes [22-25].
It is possible that the inflamed adipose tissue of the obese,
especially in the abdominal region, perpetuates the
inability to suppress MNC-derived TNF-x release after
hyperglycemia. These findings are consistent with previ-
ous observations in young adults demonstrating that
changes in insulin sensitivity are a function of abdominal
adiposity [31,46]. Thus, the uncontrolled TNF-o release
may, in turn, promote the insulin resistance observed in
our obese subjects.

The hyperinsulinemia that occurs after an oral glucose
challenge is unlikely to contribute to the unsuppressed
TNF-ao release from MNCs in obese subjects. In a previous
study, infusion of insulin as opposed to that of saline serving
as a control suppressed reactive oxygen species generation
and NF«B activation in the obese [47]. Thus, insulin exerts
an anti-inflammatory effect that ameliorates the pro-inflam-
matory response to physiological hyperglycemia evident in
an insulin-resistant state such as obesity.

In conclusion, obese reproductive-age women exhibited
an altered MNC-derived TNF-a response during physio-
logical hyperglycemia. The failure of these obese subjects
to suppress LPS-stimulated TNF-o release compared with
a normal-weight control group suggests that TNF-o of
MNC origin is involved in mediating insulin resistance
observed in these individuals. Our findings also demon-
strate that the increased adiposity in obese young women
promotes a pro-inflammatory state. The association be-
tween the change in TNF-o release and both total and
abdominal fat suggests that increased adiposity contributes
to the different TNF-a responses in these groups. We
recognize that our findings obtained from LPS stimulation
may not reflect the physiological circumstance. However,
it is intriguing to consider the possibility that when glucose
increases during the postprandial period in normal-weight
individuals, TNF-o release from MNCs is decreased to

facilitate glucose uptake by insulin-sensitive tissues.
Conversely, the loss of this postprandial response may be
one of the factors that contribute to insulin resistance in
the obese subjects.
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